AFL-基于变异的fuzz工具
afl
最后更新于
afl
最后更新于
AFL是目前最受欢迎的一个工具,是一个导向型的fuzzing工具。
AFL这个工具出来的一个起因就是AFL的开发者认为盲fuzzing的效率是比较低的;第二个原因就是Charlie Miller和Laurent Gaffié所做的样本筛选的方法是有效果的;还有第三个原因就是符号执行,符号执行在理论是非常不错的,但在实际中经常受到可行性、性能等方面的限制。于是在这样一个背景下,AFL出现了。
AFL有两个关键词:指令插桩和边覆盖。首先AFL是基于插桩的,能够辅助程序分析;其次AFL是基于边覆盖的,是对Charlie Miller等人基于块覆盖用样本筛选的一个改进和提升。
AFL(American Fuzzy Lop)是由安全研究员Michał Zalewski(@lcamtuf)开发的一款基于覆盖引导(Coverage-guided)的模糊测试工具,它通过记录输入样本的代码覆盖率,从而调整输入样本以提高覆盖率,增加发现漏洞的概率。其工作流程大致如下:
①从源码编译程序时进行插桩,以记录代码覆盖率(Code Coverage);
②选择一些输入文件,作为初始测试集加入输入队列(queue);
③将队列中的文件按一定的策略进行“突变”;
④如果经过变异文件更新了覆盖范围,则将其保留添加到队列中;
⑤上述过程会一直循环进行,期间触发了crash的文件会被记录下来。
AFL漏洞挖掘技术漫谈(一):用AFL开始你的第一次Fuzzing:https://www.freebuf.com/articles/system/191543.html
AFL漏洞挖掘技术漫谈(二):Fuzz结果分析和代码覆盖率:https://www.freebuf.com/articles/system/197678.html